

- Why Multiservice Networks?
- What Is Multiservice?

Voice Networking Overview

Voice Over Data Network Transport Mechanisms Multiservice Network Architectures

How Does Voice Over IP Transport Work?
 Applications

Challenges and Solutions

- How Does an IP Phone System Work?
- When Can I Implement IP Multiservice?

402 1029_05F9_c3 © 1999, Cisco Systems, Inc. www.cisco.com

- Why Multiservice Networks?
- What Is Multiservice?

Voice Networking Overview
Voice Over Data Network Transport Mechanisms
Multiservice Network Architectures

- How Does Voice Over IP Transport Work?
 Applications
 Challenges and Solutions
- How Does an IP Phone System Work?
- When Can I Implement IP Multiservice?

402 1030 05E0 03 @ 4000 Cinca Systems Inc.

www.cisco.com

Telephony and Data Architecture Fundamentals Comparison PBX Internet IXC Corporate Corporate Location Location Class 5 Router LEC Intranet Class 5 Router Class 5 Corporate 4 Corporate Location Location **Corporate Voice Network with Corporate Data Network with** Switches and Routers PBXs (Private Branch Exchange) 402 1029_05F9_c3 © 1999, Cisco Systems, Inc. www.cisco.com

Voice and Data Switching Comparison **Class 5 Switch Multilayer Switch** Router Switch Handset aggregator Computer aggregator All telephones get a single All devices get dedicated analog/digital line (DS0) bandwidth 10/100/1000 Mbps (autonegotiation) All devices have a phone number defined on the switch All devices have an IP address defined on the host All devices can simultaneously make a call (calls < trunk DS0s) All devices run at full line rate (bandwidth < uplink) Path selection based on static least cost routing or ARS Path selection based on dynamic routing protocol lowest cost www.cisco.com

Voice Transport Mechanisms

Layer 3—VolP

- Operates in heterogeneous network (ubiquitous)
- Connectionless (requires sequence numbers)
- "Soft" QoS
- Layer 2 and 3 overhead
- Standards-based H.323 (MGCP coming)

Layer 2—VoFR, VoATM

- Requires rigid homogenous network or L2 gateways
- Connection oriented (frames arrive in order)
- "Hard" QoS
- Layer 2 overhead
- Standards based (FRF.11/12, ATM AAL1/2/5)

402 1029_05F9_c3 © 1999, Cisco Systems, Inc. www.cisco.com

- Why Multiservice Networks?
- What Is Multiservice?

Voice Networking Overview

Voice Over Data Network Transport Mechanisms Multiservice Network Architectures

- How Does Voice Over IP Transport Work?
 Applications
 Challenges and Solutions
- How Does an IP Phone System Work?
- When Can I Implement IP Multiservice?

402 1029_05F9_c3 © 1999, Cisco Systems, Inc. www.cisco.com

Voice CODEC Cheat Sheet								
Encoding Compression	Mean Opinion Score	Native Bit Rate Kbps	Voice Quality	BW	DTMF	Dual Comp	CPU	Music on Hold
G.711 PCM	4.1	64	Α	D	A	Α	A	A
G.726 ADPCM	3.85	32	В	С	В	В	В	В
G.728 LD-CELP	3.61	16	С	В	В	С	С	С
G.729 CS-ACELP	3.92	8	Α	A	В	В	С	С
G.729a CS-ACELP	3.7	8	В	A	С	С	В	D
G.723.1 ACELP	3.65	5.3	С	Α	С	D	С	D
02 029_05F9_c3 © 1999, Cisco \$	Systems, Inc.		www.cisco.c	om				20

VoIP Low Speed Challenges a	Link (<768 Kbps) and Solutions				
Challenge	Cisco Solutions				
Congestion Delay and Delay Jitter	Intelligent Queuing WFQ, IP Precedence, RSVP, Priority Queuing				
Packet Residency	Interleaving				
Slow Link Freeze-out by Large Packets	FRF.12, MLPPP, IP MTU Size Reduction, Faster Link				
Bandwidth Consumption	Compression				
Header Size on Low Bandwidth Links	Codecs, RTP Header Compression, Voice Activity Detection Traffic Management				
WAN					
Oversubscription, Bursting	Router Traffic Shaping to CIR, Hig Priority PVC, Data Discard Eligibili				
2 !9_05F9_c3	risco.com 3				

- Why Multiservice Networks?
- What Is Multiservice?

Voice Networking Overview
Voice Over Data Network Transport Mechanisms
Multiservice Network Architectures

- How Does Voice Over IP Transport Work?
 Applications
 Challenges and Solutions
- How Does an IP Phone System Work?
- When Can I Implement IP Multiservice?

402

www.cisco.com

- Why Multiservice Networks?
- What Is Multiservice?

Voice Networking Overview
Voice Over Data Network Transport Mechanisms
Multiservice Network Architectures

- How Does Voice Over IP Transport Work?
 Applications
 Challenges and Solutions
- How Does an IP Phone System Work?
- When Can I Implement IP Multiservice?

402 1029 05F9 c3 © 1999, Cisco Systems, Inc. www.cisco.com

41

Planning and Implementation

Today

Tie-line replacement

Toll-bypass

Off Premise Extension (OPX)

Router key system replacement

Small office IP phone system (< 100 users)

Tomorrow

Virtual call centers

Campus IP phone system (> 1000 users)

Enhanced integrated data/voice applications

Unified messaging

402 1029_05F9_c3 © 1999, Cisco Systems, Inc. www.cisco.com

